Digital Edition

SYS-CON.TV
Understanding Application Performance on the Network | Part 2
Bandwidth and Congestion

When we think of application performance problems that are network-related, we often immediately think of bandwidth and congestion as likely culprits; faster speeds and less traffic will solve everything, right? This is reminiscent of recent ISP wars; which is better, DSL or cable modems? Cable modem proponents touted the higher bandwidth while DSL proponents warned of the dangers of sharing the network with your potentially bandwidth-hogging neighbors. In this blog entry, we'll examine these two closely-related constraints, beginning the series of performance analyses using the framework we introduced in Part I. I'll use graphics from Compuware's application-centric protocol analyzer - Transaction Trace - as illustrations.

Bandwidth
We define bandwidth delay as the serialization delay encountered as bits are clocked out onto the network medium. Most important for performance analysis is what we refer to as the "bottleneck bandwidth" - the speed of the link at its slowest point - as this will be the primary influencer on the packet arrival rate at the destination. Each packet incurs the serialization delay dictated by the link speed; for example, at 4Mbps, a 1500 byte packet takes approximately 3 milliseconds to be serialized. Extending this bandwidth calculation to an entire operation is relatively straightforward. We observe (on the wire) the number of bytes sent or received and multiply that by 8 bits, then divide by the bottleneck link speed, understanding that asymmetric links may have different upstream and downstream speeds.

Bandwidth effect = [ [# bytes sent or received] x [8 bits] ]/ [Bottleneck link speed]

For example, we can calculate the bandwidth effect for an operation that sends 100KB and receives 1024KB on a 2048Kbps link:

  • Upstream effect: [100,000 * 8] / 2,048,000] = 390 milliseconds
  • Downstream effect: [1,024,000 *8] / 2,048,000] = 4000 milliseconds

For better precision, you should account for frame header size differences between the packet capture medium - Ethernet, likely - and the WAN link; this difference might be as much as 8 or 10 bytes per packet.

Bandwidth constraints impact only the data transfer periods within an operation - the request and reply flows. Each flow also incurs (at a minimum) additional delay due to network latency, as the first bit traverses the network from sender to receiver; TCP flow control or other factors may introduce further delays. (As an operation's chattiness increases, its sensitivity to network latency increases and the overall impact of bandwidth tends to decrease, becoming overshadowed by latency.)

Transaction Trace Illustration: Bandwidth
One way to frame the question is "does the operation use all of the available bandwidth?" The simplest way to visualize this is to graph throughput in each direction, comparing uni-directional throughput with the link's measured bandwidth. If the answer is yes, then the operation bottleneck is bandwidth; if the answer is no, then there is some other constraint limiting performance. (This doesn't mean that bandwidth isn't a significant, or even the dominant, constraint; it simply means that there are other factors that prevent the operation from reaching the bandwidth limitation. The formula we used to calculate the impact of bandwidth still applies as a definition of the contribution of bandwidth to the overall operation time.)

This FTP transfer is frequently limited by the 10Mbps available bandwidth.

Networks are generally shared resources; when there are multiple connections on a link, TCP flow control will prevent a single flow from using all of the available bandwidth as it detects and adjusts for congestion. We will evaluate the impact of congestion next, but fundamentally, the diagnosis is the same; bandwidth constrains throughput.

Congestion
Congestion occurs when data arrives at a network interface at a rate faster than the media can service; when this occurs, packets must be placed in an output queue, waiting until earlier packets have been serviced. These queue delays add to the end-to-end network delay, with a potentially significant effect on both chatty and non-chatty operations. (Chatty operations will be impacted due to the increase in round-trip delay, while non-chatty operations may be impacted by TCP flow control and congestion avoidance algorithms.)

For a given flow, congestion initially reduces the rate of TCP slow-start's ramp by slowing increases to the sender's Congestion Window (CWD); it also adds to the delay component of the Bandwidth Delay Product (BDP), increasing the likelihood of exhausting the receiver's TCP window. (We'll discuss TCP slow-start as well as the BDP later in this series.)

As congestion becomes more severe, the queue in one of the path's routers may become full. As packets arrive exceeding the queue's storage capacity, some packets must be discarded. Routers employ various algorithms to determine which packets should be dropped, perhaps attempting to distribute congestion's impact among multiple connections, or to more significantly impact lower-priority traffic. When TCP detects these dropped packets (by a triple-duplicate ACK, for example), congestion is the assumed cause. As we will discuss in more depth in an upcoming blog entry, packet loss causes the sending TCP to reduce its Congestion Window by 50%, after which slow-start begins to ramp up again in a relatively conservative congestion avoidance phase.

For more on congestion, and for further insight, click here for the full article.

About Gary Kaiser
Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

In order to post a comment you need to be registered and logged in.

Register | Sign-in

Reader Feedback: Page 1 of 1



ADS BY GOOGLE
Subscribe to the World's Most Powerful Newsletters

ADS BY GOOGLE

The explosion of new web/cloud/IoT-based applications and the data they generate are transforming ou...
CI/CD is conceptually straightforward, yet often technically intricate to implement since it require...
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple ...
Enterprises are striving to become digital businesses for differentiated innovation and customer-cen...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As au...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't com...
DXWorldEXPO LLC announced today that All in Mobile, a mobile app development company from Poland, wi...
The now mainstream platform changes stemming from the first Internet boom brought many changes but d...
DXWorldEXPO LLC announced today that Ed Featherston has been named the "Tech Chair" of "FinTechEXPO ...
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in developm...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: D...
Andi Mann, Chief Technology Advocate at Splunk, is an accomplished digital business executive with e...
In this presentation, you will learn first hand what works and what doesn't while architecting and d...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids...
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitori...
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use ...
If your cloud deployment is on AWS with predictable workloads, Reserved Instances (RIs) can provide ...
Disruption, Innovation, Artificial Intelligence and Machine Learning, Leadership and Management hear...
We build IoT infrastructure products - when you have to integrate different devices, different syste...
Consumer-driven contracts are an essential part of a mature microservice testing portfolio enabling ...